2016年6月27日星期一

[ Wiki ]How to Evaluate Stainless Steel Sinks


THE KITCHEN SINK TAKES A LOT OF ABUSE. POTS AND PANS, DISHWARE AND SILVERWARE, ALONG WITH FOOD PREPARATION, ALL TAKE THEIR TOLL ON THE KITCHEN ESSENTIAL. AS THE CENTRAL FIXTURE IN THE KITCHEN, YOU WANT A SINK THAT CAN TAKE THE ABUSE AND STILL LOOK GOOD. ONE DURABLE CHOICE IS A STAINLESS STEEL SINK. BUT NOT ALL STAINLESS SINKS ARE CREATED EQUAL. TO EVALUATE A STAINLESS STEEL SINK, YOU NEED TO CONSIDER A FEW FACTORS IN ITS MAKEUP.

STEEL GAUGE

To ascertain the strength of the stainless steel, evaluate it based on its gauge. Stainless steel is a metal alloy used in a variety of applications, such as the construction of the Chrysler Building in New York. The thickness of stainless steel equates to its gauge, the number of layers that it takes to make 1 inch. For instance, 16-gauge stainless steel takes 16 layers of steel to make it an inch thick. The lower the gauge number, the thicker the steel, and the greater the sink can resist dents and scratches.

OXIDATION RESISTANCE

Oxidation leads to rust, but the chromium-to-nickel ratio in steel helps prevent it. So prior to purchase, check this ratio, as nickel gives the stainless steel strength and hardness, and chromium offers durability and shine. A typical chromium-to-nickel ratio uses 18 percent chromium and 10 percent nickel. It typically reads 18/10 on the sink's label.

FINISH TYPE

Stainless steel sinks come satin, polished, mirror or matte finishes. The type of finish you choose can be an asset or a liability in the kitchen. If you don't want to be constantly polishing the kitchen sink, avoid choosing a sink with a mirror or polish finish. These finishes show water spots and scratches. Instead, choose a sink with a matte or brushed finish that also provides resistance against scratches.

INSULATION

Some stainless steel sinks come without insulation. Without insulation, water heat escapes quickly, and the sounds are louder. Insulation helps to deaden the sound of water running in the kitchen. Check the type of insulation offered on the stainless steel sink. Foam insulation is of better quality and works more efficiently than sprayed-on insulation.

MOUNT TYPE AND SHAPE

Most kitchen sinks are available in differing mounting configurations. Some mount atop the counter and others underneath counters. Undermount units are best suited for solid surfaces such as stone or granite; they won't work with laminate materials. Choose a sink shape that matches your current sink or one that works well when remodeling.

BOWL DEPTH

Stainless steel sinks also come in multiple bowl depths. Some are shallow, while others offer a much deeper sink. Before buying your new stainless steel sink, verify it is deep enough to work with your cookware.

[ Wiki ]Kitchen Sink Durability: Porcelain Vs. Stainless Steel

                                                                                Kitchen sinks get a lot of use.

Among kitchen sinks, those made with stainless steel and porcelain are durable options. Stainless steel sinks last 15 to 30 years, while porcelain has a lifespan of 25 to 30 years. No matter which material you choose, proper care and maintenance will make your sink last longer.

STAINLESS STEEL

Get the most longevity from a stainless steel sink by installing one with a low gauge number. The lower the gauge, the thicker the steel and the longer it will last. Use only nonabrasive cleaners on stainless steel, and avoid cleansers containing chloride compounds. Never use steel wool or abrasive materials. The continuous dropping of silverware and dishes into the sink can scratch it, but a satin or brushed finish will camouflage these blemishes.

PORCELAIN

Porcelain sinks have a cast iron core with a baked-on porcelain finish. Because chipping and scratching of the finish shortens the sink's life, placing a stainless steel rack or soft mat in the sink's bottom can prevent chipping if a knife or dish falls into the sink. Never allow coffee grounds or other acidic materials to sit in the sink. Rinse and dry the sink after each use and clean the porcelain often, avoiding abrasive cleansers, rough sponges and steel wool. Consider having the sink refinished if the finish sustains numerous scratches and chips.

[ News ]Quality control mandatory for all producers: Indian Stainless Steel Development Association



KOLKATA: Indian Stainless SteelDevelopment Association (ISSDA), an apex body representing the stainless steel industry has said the recent government decision to introduce a Stainless Steel Quality Control Order (QCO), 2016 is mandatory for the stainless steel manufacturer --be it a domestic or foreign producer --rather than the end user. ISSDA has also pointed out that the order will have a minimum impact on the stainless steel utensils market since it does not cover stainless steel containing less than 1% of nickel. 

"Manufacturers would henceforth have to go in for BIS marking on the relevant grades. This provision will be applicable to all stainless steel products falling under the above mentioned standards, whether it is manufactured in India or is being imported into India. Although the QCO refers to the HS Codes, these are only indicative in nature. The QCO is applicable on the product form mentioned in the three standards and the 25 grades covered under it," N C Mathur, President, ISSDA said. 

"The QCO does not cover raw material (stainless steel) containing less than 1% nickel, while stainless steel containing less than 1% nickel is majorly used for kitchen utensils. Moreover, this QCO is not restrictive as the end user is free to use other grades of stainless steel which is not covered in the QCO. The onus to supply ISI marked stainless steel therefore, rests exclusively on the stainless steel manufacturer rather than the end user," Mathur added. 

In the recent past, the government has been issuing steel quality control orders to rein in poor quality and defective steel products being imported into the country. It has also taken a series of measures like imposition of a minimum import price, anti-dumping and safeguard duty on various steel products to check imports from countries such as China, South Korea and Japan. 

The latest QCO is applicable to some 25 grades of stainless steel which are covered under its ambit. Incidentally, the QCO mainly covers three Indian Standards (BIS) including IS 5522, IS 15997 and IS 6911. Grades covered by these three standards are: IS 5522 - 304, 302 & 430; IS 15997 - N1 (Min 1% Nickel), N2 (Min 1.5% Nickel) & N3 (Min 4% Nickel); IS 6911 - 405, 430, 410, 420S1, 420S2, 420S3, 431, 440, 201, 201A, 202, 301, 302, 304S1, 304S2, 309, 310, 316, 316L, 316Ti, 321 & 347. The grades are defined under three BIS standards (pertaining to stainless steel flat products) mentioned in the Schedule namely: IS 5522: Stainless steel sheets and strips for utensils; IS 15997: Low Nickel austenitic stainless steel sheet and strip for utensils and kitchen appliances and IS 6911: Stainless steel plate, sheet and strip -specifications.

[ News ]Global stainless steel kitchen sinks industry 2016 market research report just published

Firstly, the report provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Stainless Steel Kitchen Sinks Market analysis is provided for the international market including development history, competitive landscape analysis, and major regions’ development status.






Description:
The Global Stainless Steel Kitchen Sinks Industry 2016 Market Research Report is a professional and in-depth study on the current state of the Stainless Steel Kitchen Sinks industry.
Firstly, the report provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Stainless Steel Kitchen Sinks Market  analysis is provided for the international market including development history, competitive landscape analysis, and major regions’ development status.

Secondly, development policies and plans are discussed as well as manufacturing processes and cost structures. This report also states import/export, supply and consumption figures as well as cost, price, revenue and gross margin by regions (United States, EU, China and Japan), and other regions can be added.
Then, the report focuses on global major leading industry players with information such as company profiles, product picture and specification, capacity, production, price, cost, revenue and contact information. Upstream raw materials, equipment and downstream consumers analysis is also carried out.
What’s more, the Stainless Steel Kitchen Sinks industry development trends and marketing channels are analyzed.

Finally, the feasibility of new investment projects is assessed, and overall research conclusions are offered.
In a word, the report provides major statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market.

Few Major Points from Table of Contents:  
1 Industry Overview of Stainless Steel Kitchen Sinks
2 Manufacturing Cost Structure Analysis of Stainless Steel Kitchen Sinks
3 Technical Data and Manufacturing Plants Analysis of Stainless Steel Kitchen Sinks
4 Capacity, Production and Revenue Analysis of Stainless Steel Kitchen Sinks by Regions, Types and Manufacturers
5 Price, Cost, Gross and Gross Margin Analysis of Stainless Steel Kitchen Sinks by Regions, Types and Manufacturers
6 Consumption Volume, Consumption Value and Sale Price Analysis of Stainless Steel Kitchen Sinks by Regions, Types and Applications
7 Supply, Import, Export and Consumption Analysis of Stainless Steel Kitchen Sinks
8 Major Manufacturers Analysis of Stainless Steel Kitchen Sinks
8.1 Franke
8.2 Kohler
8.3 Moen
8.4 Officine Gullo
8.5 ELLECI
8.6 Smeg
8.7 PYRAMIS
8.8 Barazza
8.9 Teka
8.10 Acrysil Ltd
8.11 ASTRACAST
8.12 Eisinger Swiss
8.13 Falcon (Rangemaster)
8.14 Foster
8.15 GLEM
8.16 Elkay Manufacturing
9 Marketing Trader or Distributor Analysis of Stainless Steel Kitchen Sinks
10 Industry Chain Analysis of Stainless Steel Kitchen Sinks
11 Development Trend of Analysis of Stainless Steel Kitchen Sinks
12 New Project Investment Feasibility Analysis of Stainless Steel Kitchen Sinks
13 Conclusion of the Global Stainless Steel Kitchen Sinks Industry 2016 Market Research Report

[ Wiki ]Metallography of Stainless Steels

INTRODUCTION

Stainless steels are referred to corrosion-resistant steels that consist of up to 11% chromium. This set of high alloy steels are further divided into four categories; austenitic, martensitic, ferritic, and austenitic-ferritic (duplex) stainless steels (Figure 1). These categories describe the microstructure of an alloy at room temperature, which is considerably affected by the composition of the alloy.
Figure 1. Duplex steel etched electrolytically with 150x40% aqueous sodium hydroxide solution, showing blue austenite and yellow ferrite.
Corrosion resistance is the main property of stainless steels, and this feature can be further improved by adding certain alloying elements. Such elements impart positive effect on other properties, like oxidation resistance and toughness.
Titanium and niobium, for example, boost resistance against inter-granular corrosion as they take in the carbon element to produce carbides; nitrogen to increase strength, and sulfur to increase machinability because it form tiny manganese sulfides that lead to short machining chips. Stainless steels have excellent surface finishes and corrosion resistance, so they play a major role in the medical, aircraft, food and chemical industries, in architecture, professional kitchens, and jewelry.
Metallography of stainless steels is an important part of the overall quality control of the production process. The important metallographic tests are as follows:
  • Detection of delta ferrite and sigma phase
  • Measurement of grain size
  • Assessment and distribution of carbides
In addition to this, metallography is also utilized in failure analysis of oxidation and corrosionmechanisms.

DIFFICULTIES DURING METALLOGRAPHIC PREPARATION

Grinding and Polishing

This involves the deformation and scratching of austenitic and ferritic stainless steels (Figure 2); inclusions and carbides are retained.

Figure 2. Austenitic steel, color etched (Beraha II).

Solution

Alumina or colloidal silica can be used for systematic diamond polishing and final polishing.

PRODUCTION AND APPLICATION OF STAINLESS STEEL

High alloy steels are produced by melting and remelting processes, which are highly advanced procedures. In an electric arc furnace, a combination of well sorted scrap and iron is initially melted and continuously cast into billet or bloom, or cast into ingot form. These main products can be additionally processed into rod, bar, or plate shapes in a large number of applications. For higher quality steels, the main product can be utilized as feedstock for a secondary process of steelmaking. This process can be remelted twice or even three times by vacuum induction melting and electroslag remelting or vacuum arc remelting, which can be carried out under protective and pressure gases.
The secondary process is usually done to reduce impurities like silicates, sulphides, and oxides, so that with repeated remelts the level of cleanliness increases, producing uniform ingots with excellent physical and mechanical properties.

Application

Stainless steels’ high corrosion resistance depends on the creation of a passive surface oxide layer that spontaneously rebuilds itself when it is damaged mechanically, and is also based on alloying iron with chromium. Stress, pitting, intercrystalline, and vibrational corrosion are different types of corrosion that can occur. If alloying elements other than chromium are added, better resistance against certain forms of attack can be obtained. Molybdenum, for example, enhances resistance against pitting corrosion. Here the primary alloys, properties, and the associated applications of four forms of stainless steels are elucidated.
Ferritic stainless steels have a low carbon content, with 11 to 17% of chromium, and they are non heat treatable alloys. Properties of ferritic stainless steels include moderate strength and toughness, magnetic property, and resistance to atmospheric corrosion. Applications include car trim, razor blades, and magnetic valves.
Martensitic stainless steels have a medium carbon content, with up to 12 to 18% of chromium and 2 to 4% of nickel. They are heat treatable alloys. Properties include high creep resistance, high temperature resistance, and high corrosion resistance. Applications include knives, scalpels, tweezers and hooks in medical applications, high performance parts and drive systems for aircraft.
Austenitic stainless steels have 0.03 to 0.05% of carbon and their main alloying elements are molybdenum (2-4%); nickel (8-25%), and chromium (17-24 %). Niobium and titanium are added for carbide forming. Austenitic stainless steels are not heat treatable. Properties include high corrosion resistance, high ductility, good cold forming properties, resistant to oxidizing acids and alkalis, and easy to work and machine. Applications include implants, bolts, and screws; low temperature applications comprise pipes and vessels and pipes in the food, chemical, and pharmaceutical industries, and kitchen utensils.
Austenitic-ferritic steels (Duplex) have lower nickel content (4-6%) and higher chromium (21-24%). They have 2 to 3% of molybdenum and exhibit a low carbon content. Properties include excellent resistance from stress corrosion, and fatigue resistance in corrosive media. Applications include architecture, equipment for environmental, chemical, and offshore industries.

Difficulties in the Preparation of Stainless Steels

Austenitic steels are ductile and ferritic stainless steels are soft, and both are inclined to mechanical deformation. These steels become highly reflective when subjected to final polishing, but if they are not fully pre-polished, deformation will reappear following etching (Figure 3). Martensitic steels have excellent hardness, and can be easily polished. However, carbides should be preserved properly.
Figure 3. Austenitic steel insufficiently polished 500x showing deformation after etching (Beraha II).

RECOMMENDATIONS FOR THE PREPARATION OF STAINLESS STEELS

High pressures and highly coarse grinding papers or foil should not be used for soft and ductile stainless steels, as this can lead to deep deformation. Generally, the finest possible grit, which is uniform with the surface roughness and sample area, must be utilized for plane grinding. Diamond on a rigid disc, such as MD-Largo, is used to perform fine grinding, or on a MD-Plan cloth as an alternative to certain types of stainless steels. After fine grinding, a complete diamond polish is done on a medium soft cloth. This is followed by a final polish using alumina (OP-A) or colloidal silica (OP-S) for scratch removal. This particular step should be done meticulously and will take several minutes. A better contrast can be obtained through a good final polish. Fine grinding and even final polishing will not remove deformations occurring from the initial grinding step. Such deformations will leave some traces.
A preparation method for stainless steel samples is shown in Table 1, and a preparation method for 6 stainless steel samples is illustrated in Table 2.
Table 1. Preparation method for stainless steel samples, 30 mm diameter mounted, on the semi-automatic Tegramin, 300 mm diameter
Table 2. Preparation method for stainless steel samples, 65x30 mm, cold mounted or unmounted using Struers MAPS or AbraPlan/AbraPol, 350 mm diameter

ELECTROLYTIC POLISHING

When it comes to rapid general structure check and research analysis, electrolytical polishingand etching provides an alternative option to mechanical polishing of stainless steels, because this process does not leave mechanical deformations. However, while electrolytical polishing does provide good result for investigating the microstructure (Figure 4), it is not suitable for detecting carbides, which appear either enlarged or washed out.
Figure 4. Stainless steel weld, polished and etched electrolytically, DIC
The samples need to be ground to 1000# on silicon carbide paper or foil prior to electrolytical polishing. If the initial surface is finer, better electrolytical polish can be obtained. Preparation method is as follows:
  • Electrolyte: A3
  • Flowrate: 13
  • Area: 1 cm²
  • Voltage: 35 V
  • Time: 25 seconds
External etching with stainless steel etching dish
  • Voltage: 15 V
  • 10% aqueous oxalic acid
  • Time: 60 seconds

ETCHING

Some amount of expertise and patience is required to etch stainless steels. Extensive literature is available for etchants, and it is suggested to test out various etchants to set up a separate stock of solutions that are suitable for a certain material prepared in the lab on a regular basis.
Stainless steels have excellent resistance against corrosion, so very strong acids are needed to expose their structure. When handling these etchants, standard safety precautions should be followed. In most labs, the etchants specified in the literature will be altered based on personal preference or the material that is being etched. Adequate final oxide polishing is required to obtain good etching results. Some etchants are effective in routine applications, and they are as follows:
Chemical etching
  • For martensitic steels - 25g picric acid, 925 ml ethanol, 50 ml hydrochloric acid.
  • For austenitic steels - Swab etch: 500 ml distilled water, 300 ml hydrochloric acid, 200 ml nitric acid, 50 ml of a saturated iron-III-chloride solution, 2.5g copper-II-chloride, 300 ml hydrochloric acid, 100 ml water, 15 ml hydrogen peroxide (30%); V2A etchant: 100 ml hydrochloric acid, 100 ml water, 10 ml nitric acid, etch at room temperature or up to 50°C temperature.
  • Color etchant Beraha II: Stock solution, 800 ml distilled water, 400 ml hydrochloric acid, 48g ammonium biflouride; to 100 ml of this stock solution 1 to 2g of potassium metabisulfite should be added for etching.
Electrolytic etching
  • All stainless steels: 10% aqueous oxalic acid
  • For austenitic-ferritic steels (Duplex) - 40% aqueous sodium hydroxide solution
The proposed safety precautions should be followed when handling chemical reagents.

STRUCTURE INTERPRETATION

Heat treatment has no effect on ferritic stainless steels, but the properties of these steels can be affected by cold working. At room temperature, ferritic stainless steels are magnetic. In annealed condition, the microstructure includes ferrite grains, wherefine carbides are integrated. Ferritic steels employed for machining purposes include a considerable amount of manganese sulfides to enable free cutting, as shown in Figure 5.
Figure 5. Ferritic stainless steel with manganese 200x sulfides and strings of small carbides, etched electrolytically with 10% oxalic acid.
Heat treatment has a major effect on martensitic stainless steels, which are formed via instant cooling. Tempering treatment can be used to optimize their properties. The alloys of martensitic stainless steels are magnetic in nature. The microstructure can range from pure martensitic structure, through to fine tempered martensite based on the thermal treatment. Complicated heat treatment temperatures are required for different alloys and different sizes of semi-finished products. An often unwanted phase is delta ferrite (Figure 6), because extended annealing times of steels with high chromium content at 700 to 950°C can alter the delta ferrite into a brittle and hard iron-chromium intermetallic sigma phase.
Figure 6. Tempered martensitic stainless 75xsteel with delta ferrite, etched with picric acid.
The sigma phase and the embrittlement are removed by heating to a temperature of 1050°C. Thermal treatment has no effect on austenitic stainless steels, but quick cooling leads to the formation of their softest condition. Austenitic stainless steels are non-magnetic in this state, and their properties are affected by cold working. The steels’ microstructure includes austenite grains that may display twinning (Figure 7).
Figure 7. Cold worked austenitic steel showing twinning, etched with V2A etchant.
When these steels are exposed to increased temperatures of 600 to 700°C, complex carbides are formed inside the austenite grains. This results in an insolvency of chromium in the austenite solid solution, increasing the sensitivity to inter-granular oxidation or corrosion. The risk of inter-granular corrosion can be minimized by reducing the carbon content to less than 0.015% and introducing minute quantities of niobium or titanium. This is because these elements form carbides rather than the chrome (Figure 8). Delta ferrite can be a result of the cold working of austenitic steels or heat treatment conditions in martensitic steels (Figure 9).
Figure 8. Austenite with carbides and some 200x titanium carbon nitrides.
Figure 9. Austenitic steel with strings of delta 125xferrite, showing microsegregations. Blue areas: depletion of alloying elements.
Austenite and ferrite are present in austenitic-ferritic stainless steels (Duplex). The structure is revealed through electrolytic etching in a 40% caustic soda solution, and this helps to estimate the right percentage of individual phases (Figure 10). These steels are ductile and are mainly utilized in the paper, food, and petroleum sectors.
Figure 10. Forged duplex steel showing blue ferrite, white austenite and fine needles of sigma phase, etched electrolytically with 40% aqueous sodium hydroxide.

CONCLUSION

Corrosion resistant steels are referred to as stainless steels, which contain high contents of nickel and chromium. Stainless and ferritic steels are soft, ductile, and inclined to scratching and mechanical deformation during the course of metallographic preparation. Moreover, carbides cannot be retained often. To ensure an effective mechanical polish, the following things should be considered.
  • Fine grinding and polishing with diamond must be meticulous, and all deformation should be removed from plane grinding.
  • Coarse abrasives for plane grinding should not be used
  • A final oxide polish with alumina or colloidal silica should be done to provide a surface that is free from deformation.
A four step process carried out on an automatic preparation system provides good and reproducible results. Chemical etching of stainless steels can be difficult, and the proposed etchants are corrosive and have to be handled carefully. Another option is to use electrolytical polishing and etching, which does not retain carbides, but provides a deformation-free surface.

[ News ]China to reinvestigate anti-dumping case into stainless steel tubes from EU, Japan


China's Commerce Ministry said on Monday it would reinvestigate its anti-dumping case into imports of high performance, seamless stainless steel tubes from Japan and the European Union.

China lost an appeal ruling in October at the World Trade Organization in a dispute in which Japan and the European Union had complained about Chinese use of anti-dumping duties on the steel products.
stainless steel fabrication

FOR MORE, FEEL FREE TO VIEW OUR WEBISTE:

[ News ]Steel scrap: A world-traded commodity


To most, the word ‘scrap’ evokes visions of unwanted, discarded leftovers. However, to the steel industry, scrap represents a vital resource that enhances all aspects of steelmaking.
The recycling of scrap metal is an integral part of modern steelmaking, improving the industry's economic viability and reducing environmental impact. The recycling of steel scrap reduces the need for iron ore extraction, significantly reducing CO2 emissions, energy and water consumption and air pollution.
As a result of these efficiencies, steel scrap is increasingly being regarded as a raw material for manufacturing new products worldwide. Ferrous scrap – iron and steel – has become a globally traded commodity. The increased demand for steel scrap is reflected in recent trade statistics.
The United Nations Commodity Trade Statistics Database shows that the volume of global scrap exports increased from 9.3 million tonnes in 1990 to 106 million tonnes in 2011. Figures from the Bureau of International Recycling show that total world steel scrap use increased 7.6% in 2011 to reach 570 million tonnes.
The globalization of the ferrous scrap market, however, also places stresses on the system. The long lifespan of steel products means that the amount of steel available for recycling cannot keep up with the current world demand for new steel products. With steel, structures can last longer than 60 years and cars often last longer than 12 years; steel products can be seen as scrap-in-inventory – meaning that the steel will not be ready for recycling until the long life of the product comes to an end.
A positive aspect of steel is the ease of recycling when products finally do reach the end of their life. The ability to recover and collect old steel products for subsequent recycling is greatly enhanced by the inherent magnetic properties of steel; consequently, a large tonnage of steel becomes available for recycling every year.
Figures from the US Census Bureau and the US International Trade Commission demonstrate that the US is the world’s largest exporter of ferrous scrap – exporting nearly 23 million tonnes of iron and steel scrap in 2011. Globally, China, Taiwan, South Korea, India, Canada, and Turkey are the largest markets for exports of US steel scrap in that same period.
Ferrous scrap exports from the EU to third countries reached a record high in 2012. The 27 member states exported around 19.22 million tonnes of iron and steel wastes and scrap valued at €6.8 billion to countries outside the Union (extra-EU trade), according to preliminary figures released by the European Statistical Office, Eurostat. The export volume exceeded the 2011 amount of 18.81 million tonnes by 407,000 tonnes or 2.2%. The UK was by far the largest exporter of the EU-27, shipping nearly 5.2 million tonnes of ferrous scrap outside the EU. The most important destination country for EU ferrous scrap was Turkey. At 11.05 million tonnes and a value of €3.3bn, around 58% of all extra-EU ferrous scrap exports headed to this country (2011: 9.97 million tonnes, €3.1bn).
North America is also one of the largest consumers of its own steel scrap – recycling more than 70% of that scrap domestically, with mini-mills being the primary source of recycled steel. Mini-mills use electric arc furnaces, which melt scrap metal via the heat produced by an electric arc. US producers Nucor (one of the world's largest steel producers), as well as one of its competitors, Commercial Metals Company (CMC) use mini-mills exclusively. Since the electric arc furnace can be easily started and stopped on a regular basis, mini-mills can follow the market demand for their products easily, operating on 24 hour schedules when demand is high and cutting back production when sales are lower.
“This high level of scrap consumption is a reflection of the steel industry’s commitment to conserving energy and natural resources,” said Gregory Crawford, executive director of the Steel Recycling Institute in North America. “Scrap steel is used in everyday products, including packaging, appliances, automobiles and construction. Each year, more steel is recycled in North America than paper, aluminum, plastic and glass combined.”
This flow of scrap also faces challenges in the form of trade restrictions. The Organization for Economic Cooperation and Development (OECD) reported in 2012 that North American and European ferrous scrap is traded openly, but that about 19 percent of the scrap trade is burdened by various trade restrictions.
The 2012 OECD report noted that “waste and scrap exports are restricted in many parts of the world. Waste and scrap trade involving iron and steel and non-ferrous base metals (copper, aluminum, lead and zinc) tends to be more regulated than trade involving other metals.”
The OECD found that, in 2009, at least 19% of scrap of iron and steel, exported by a total of 34 countries, was subject to export restrictions. “Export restrictions dampen trade flows,” stated the report. “In fact, some exports actually will not take place due to the very fact that export restrictions are in place. Export activity would be higher if restrictions did not exist.”
The rationales that governments cite most frequently as motivating their use of the restrictions include safeguarding domestic supplies, controlling illegal exports, and protecting local industry. Non-automatic export licensing, export taxes and other export prohibitions were among the measures used to regulate the export of iron and steel scrap, according to the OECD.

[ News ]Building sustainable benefit with steel construction


Even during periods of economic turmoil, the environment remains a key issue for our world.
By 2050, it is estimated that there will be two billion more people living in the world’s cities which, according to experts, will mean that world construction will grow by more than 70% and reach $15 trillion by 2025, outpacing global GDP. Part of the solution is to build with steel – 50% of steel is used in construction. With four people per house, this will mean providing 1,427 homes every hour, with most of them needed in Asia and Africa. How can such growth be made sustainable?
As most people are aware, steel is used in so many important applications, from bridges and other large constructions, trains and rail lines to industrial machinery, housing, offices, hospitals, cars, buses and bicycles, to name but a few examples. Steel delivers a number of unique environmental benefits, such as product longevity, recyclability, easy transportation and less raw material wastage. In addition, steel offers architectural and design flexibility due to its inherent strength, which allows large span distances and curves to be easily incorporated into designs.
Perhaps best of all, steel is 100% recyclable, without losing any of its properties or strength, and thus reducing the solid waste stream, which results in saved landfill space and the conservation of natural resources. Indeed, more steel is recycled each day than any other material. Even better, the steel industry as a whole has dramatically improved its energy efficiency over the past 30 years, cutting energy consumption by 50% per tonne of steel produced and substantially reducing carbon dioxide (CO2) emissions, also per tonne of steel.
The industry is always looking for ways to improve, and to that end a project is in place in the United States that explores the possibility of replacing carbon with hydrogen in blast furnaces. In addition, ULCOS, which stands for Ultra–Low Carbon Dioxide(CO2) Steelmaking, is a consortium of 48 European companies and organisations from 15 European countries that have launched a co-operative research and development initiative to enable drastic reduction in CO2 emissions from steel production. The consortium consists of all major EU steel companies, energy and engineering partners, research institutes and universities and is supported by the European Commission. The aim of the ULCOS programme is to reduce today’s CO2 emissions by at least 50%.
From a human health perspective, steel frames have proven ideal for the ‘healthy home’ concept. The incidence of asthma and sensitivity to chemicals is on the increase and steel frames have been used to achieve allergen-free and dust-free interiors. This requires techniques such as special sealing around windows, moisture barrier systems in the walls, extensive insulation, and whole house ventilation systems. Steel frames retain their original dimensions, which is a major factor in maintaining effective long-term sealing.
Steel is already being used to help manufacture lighter, more fuel-efficient vehicles as well as renewable energy infrastructure including wind turbines, solar installations, smart electric grids and energy-efficient housing and commercial buildings. Its economic benefits include its quick construction off-site, which means less site disturbance and waste, more usable floor space, e.g. thinner floors allowing for more stories in a building, the flexibility to re-configure buildings and steel has a long life with low maintenance, plus energy efficiency for lower operating costs.

[ News ]Taking carbon capture and storage a step further


Emirates Steel in the UAE is taking part in an innovative and ambitious project whose aim is to capture, reuse and store 800,000 tonnes of carbon dioxide (CO2) from its steel plant annually.  The project is scheduled to be completed by 2016. The goal is to produce steel with lower carbon dioxide emissions to the atmosphere by capturing the CO2 produced in the iron and steel making process, injecting it into existing oil fields for enhanced oil recovery (EOR) and storing it at the same time.
The CO2 supply stream from the Emirates Steel plant, contains approximately 90% CO2, and will be transported to a compression and dehydration facility at the storage site in Mussafah. The CO2 will be compressed creating CO2 with a purity of 98%, then transported through 50km of pipeline network, and finally injected into an onshore oil field, operated by Abu Dhabi Company for Onshore Oil Operations.
This project was made possible thanks to the partnership between Masdar, the Abu Dhabi national clean energy conglomerate, and the Abu Dhabi National Oil Company (ADNOC). The joint venture was signed on 10 November 2013 and will consist of three key components:
• CO2 will be captured onsite at Emirates Steel, the UAE's largest steelmaking facility.
• The CO2 will then be compressed and transported along the 50km pipeline to oil fields operated by ADNOC.
• ADNOC will inject the CO2 into oil fields to enhance oil recovery, while storing the injected CO2 underground. 
The UAE has traditionally used hydrocarbon gases in some of the Abu Dhabi fields to enhance oil production. However, with the rise in energy demand, this Carbon Capture Usage and Storage project will allow the UAE to preserve its natural gas for domestic electricity generation.
The Emirates Steel Carbon Capture and Storage project complements other technologies to reduce carbon emissions currently being researched at a global scale:
  • ULCOS (Europe)
    ULCOS is the EU-sponsored Ultra-Low CO2 Steel-making project made up of a consortium of 48 European companies and organisations from 15 European countries. ULCOS is working on projects which ultimately could reduce carbon dioxide emissions from steel production by at least 50%. The most promising breakthrough technology been researched by ULCOS is the HIsarna process which is running in a pilot operation at the Tata Steel site in IJmuiden in the Netherlands. In this process fairly pure CO2 is produced which can be used for carbon capture and storage with little further cleaning necessary. The expected reduction in CO2 intensity per tonne of crude steel produced is 20% – 25%. To be able to be effective, this process will also rely on CCS to realise the 50% reduction in CO2 intensity or more.
     
  • COURSE-50 (Japan)
    This programme is strongly supported by the Japanese government as they are investing in the transportation, reuse and storage of the CO2. A number of projects have been established for a long period of time especially on storing CO2 in rock structure one or two kilometers underground. The sites have been significantly tested in recent earthquakes and no loss of CO2 has been detected by the sensors placed on the surface.
     
  • POSCO (South Korea)
    In Korea, POSCO runs its own programme to look at the adaptation of CCS to the Finex smelting reduction processes. They are also completing trials on capturing CO2 from a blast furnace which uses similar technology than that being researched by the ULCOS programme.
     
  • China Steel Corporation with Taiwan CCS Alliance coordination (Taiwan)
    Taiwan CCS Alliance is composed of 11 companies and organisations amongst which worldsteel member company, China Steel Corporation (CSC) is a participant. The Alliance is currently focusing their research activities on two main technologies: the oxy fuel burner technology which aims at purifying CO2 by burning without nitrogen content; and the chemical absorption pilot plant which seeks to further decrease energy consumption per unit of CO2 captured. Additionally academic cooperation projects in CSC include BOF slag carbonation and microalgae carbon fixation.
     
  • BlueScope Steel and OneSteel with CSIRO coordination (Australia)
    In Australia, CSIRO is working with BlueScope and OneSteel on two significant projects aimed at cutting CO2 emissions: biomass, which uses renewable carbon derived from biomass in steel manufacturing and heat recovery from molten slags through dry granulation, which captures the waste heat released from slag cooling, thus reducing CO2 emissions. These programmes have received large support from the Australian government.
Some of these R&D projects potentially can reduce CO2 emissions by more than 50%. Research is now focused on feasibility at various levels of production, from laboratory work to pilot plant development, demonstrators and eventually commercial implementation. However, initial R&D investment of several million dollars will be required for these projects to come to completion.
Further cuts in CO2 emissions will be achieved in future decades through the increased use of the R&D technologies currently funded, but also through the increased recycling of scrap and its use in the production process. According to the Global CCS Institute, around 70%-80% of emissions can be avoided by using scrap in steel production, avoiding the need for using carbon to reduce iron ore and by only using melted scrap. However, scrap and scrap availability is dependent on the cost of recovery and usually matches the economic level of iron-ore and coal requirement.  
The International Energy Agency 2013 roadmap demonstrates that CCS is an integral part of any lowest-cost mitigation scenario. The total CO2 capture and storage rate must grow from the thousands of tonnes captured in 2013 to billions of tonnes of CO2 in 2050 in order to address the emissions reduction challenge (2DS scenario).
The steel industry is fully aware of the need for implementing technological solutions to reduce carbon emissions to the atmosphere through CCS or other forms of breakthrough technologies and will continue to concentrate its efforts on this goal for decades to come.